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Abstract. The prevalent design process nowadays for producing machine
learning models requires large datasets that contain different types of data
(numerical, categorical, ordinal) depending on the use case or application interest.
However, increased Internet users’ concerns regarding data privacy might
significantly impact the data collection process in specific machine applications,
particularly those related to sensitive data like healthcare services. In this regard,
the feasibility of federated learning has been investigated, commonly using the
seminal Federated Averaging (FedAvg) algorithm to produce a generalized model
from the individual models shared by the users through an aggregation process.
In this context, this paper aims to contribute to understanding, to a certain extent,
the scope of model averaging (used by FedAvg) to identify the cases in which its
application is feasible. For this, we adopt a generic federated scenario in which
we abstract the selection and configuration stages to focus on the aggregation
process. Due to the diversity of possible architectures to perform the aggregation
process, we consider three generic architecture families. Through simulation, we
quantify the precision achieved by each method under different conditions, such
as the number of participants, the type of data used in local learning, etc.

Keywords: Federated learning, model aggregation, neural networks.

1 Introduction

In the last decade, Internet cloud services have allowed users to store and process
large amounts of data that can be accessed anytime, anywhere, from personal
computers to mobile devices such as smartphones, wearables, home assistants, etc.
By gathering data in the cloud, new business models based on information extraction
using machine learning (ML) algorithms can be created, transforming decision-making
into knowledge-based decision processes. The design process of machine learning
algorithms involves training a learning model using a dataset stored in cloud computing
facilities. While this is the commonly followed approach nowadays, a growing concern
exists regarding data privacy, where users might struggle to share their data for machine
learning purposes with a centralized entity on the Internet. This could be the case in
specific scenarios dealing with sensitive data, such as healthcare.
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Fig. 1. Federated learning system.

Based on this, Google introduced the term federated learning (FL) in 2017, a
brand-new paradigm for machine learning that tackles a few concerns in terms of data
privacy, network bandwidth restrictions, and device capabilities (computing, energy,
and communication resources). FL emerged as a solution where various users (devices,
organizations, etc.) can train a common global model jointly. The training process in
federated learning incorporates two stages:

– Each client (device or organization) uses the collected data to train a local model,
which is sent to a central entity.

– A centralized entity receives all the local models from clients and executes an
aggregation process to create a global model.

At the same time, Google unveiled the first federated learning algorithm called
Federated Averaging (FedAvg) [2] based on a progressive training process where model
averaging is applied through a three-stage structure deployed in a cloud architecture. For
each learning round: 1) a set of clients is selected to participate; 2) each selected client
computes an update to the current global model by the server, and only the update is
transmitted; and 3) the cloud server aggregates all received local models.

Meanwhile, for the common global model, FedAvg established an aggregation
method based on average. The parameters of local models are averaged element-wise
with weights proportional to the sizes of the client datasets. The model averaging
method emerged as the standard aggregation method used most frequently in academia
because of FedAvg’s performance on numerous classification and prediction problem
tasks. In addition, the development of FL algorithms, mostly FedAvg variants, indicated
room for improvement in several areas.

For instance, certain works, such as [5, 4], have investigated how to optimize wireless
networks for FL implementation and address issues with wireless communication such
as orientation, mobility, and intrusion detection [7]. Other FL algorithms are focused
on enhancing the FedAvg structure. For instance, improving the selection stage through
better decision-making about which clients could be considered participants in the
aggregation process.
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Fig. 2. Deployment strategies for a FL system.

Meanwhile, the configuration stage is refined in the model training process,
specifically by optimizing the clients’ computational resources. However, aggregation
is barely explored because many FL algorithms have opted for the classic averaging
method for model aggregation. In this sense, we identify a need to explore other
aggregation methods besides averaging and determine under which conditions an
aggregation method is better than others.

In this paper, we provide a first approximation of the aggregation of learning
models in the FL paradigm using neural networks with different learning processes
(error-based and memory-based). Moreover, we develop a federated learning system
to simulate the clients through an on-device learning process, and the central entity
that receives the models to start the aggregation process. Specifically, we formulate a
scenario like the FedAvg three-stage structure; however, the main goal is to explore how
the aggregation process works in different neural networks and compare them under
different configurations through performance metrics.

Attending to the arguments, this paper gives an analysis to understand the
aggregation process, explore the model aggregation techniques, and show how they
can be integrated into neural networks with different learning processes. The rest of the
paper is organized as follows. Section 3 presents the related work. Section 4 presents
the system model and implementation of the FL system. Section 6 presents the results
of some experiments between the different aggregation types. Section 7 details the
envisioned contributions and concludes the paper.

2 Preliminaries

In section 2.1, we present a brief description of key concepts related to federated
learning, including the deployment strategies (cloud, edge, hybrid) and learning
approaches (horizontal and vertical). Then, section 2.2 presents an overview of neural
networks, including the most commonly used learning processes (error-based and
memory-based).
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Table 1. Model aggregation techniques.

Reference Aggregation technique Description

[2, 21]
Complete The central entity averages local models of all

participating clients.Averaging (CA)

[21]
Best Half The central entity averages local models of the best

half of participating clients.Averaging (BHA)

[21]
Best Model After receiving all local models, the central entity

chooses the best model.Selection (BMS)

2.1 Overview of Federated Learning

Federated learning is conceived of as a new distributed learning paradigm that has
received a lot of interest lately since it addresses some of the privacy and data security
concerns identified in the conventional paradigm. A basic federated learning system
consists of a group of clients who train a local model based on their local data, upload
the model to a central entity, and aggregate the models of each user. Figure 1 depicts a
straightforward federated learning system.

Deployment techniques and learning approaches are two crucial elements that must
be integrated into a federated learning system. To create a global model in FL,
computing entities deployed at a facility for edge computing or cloud computing could
potentially be used. Figure 2 illustrates the three deployment options for an FL system,
which can be classified as cloud, edge, and hybrid.

Figure 2a shows the cloud-based FL deployment strategy, where each device creates
a unique model through a training process with its data; the parameters of these models
are then updated on the cloud to produce an aggregated model. Figure 2b shows that
the base station’s cell site’s edge computing nodes will combine the base stations’
separate learning models. This form of architecture is suitable from the standpoint of
communication to satisfy the latency requirements related to updating the individual
models toward the computing unit in charge of the aggregate.

A set of users within a specific coverage region can also acquire more representative
global learning models thanks to the FL at the edge. Eventually, you can benefit from
both cloud and edge computing by using the hybrid strategy presented in Figure 2c. In
other words, a local model aggregation entity at the edge receives model changes from
mobile devices quickly. Then, to create a global model, models that were uploaded to
the edge nodes are sent to the cloud, where an aggregation process is carried out.

On the other hand, if the data properties of each client are consistent, an FL global
model can produce the same modeling results as a centralized paradigm [3]. Three basic
categories can be used to categorize federated learning based on the features of the data
from the participating clients [27]. Each category is briefly detailed below.

– Horizontal FL: Also known as sample-based federated learning, this category is
used when datasets share the same feature space but different sample sizes.

– Vertical FL: Also referred to as feature-based federated learning, this category
can be used when two datasets have different feature spaces but the same sample
identification space.
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Table 2. Summary of related work.

Reference FL
Algorithm

Deployment
Architectures

Machine Learning
Algorithms

Experiments
Information Model

Aggregation
TypeCloud Edge Hybrid

Memory-based Error-based
Dataset Clients

RBFN CNN MLP LIR LOR

This work, 2023 FedRBFN ✓ - - ✓ - ✓ ✓ - Synthetic 5-50

CA

BHA

BMS

[20], 2022 FedBCD ✓ - - - ✓ - - ✓

MIMIC III

- CA
MNIST

NUS-WIDE

Default-Credit

[26], 2022 FedHome - - ✓ - ✓ ✓ - - MobiAct 57 CA

[14], 2021 SCAFFOLD ✓ - - - - ✓ - - MNIST 100 CA

[6], 2020 FedHealth ✓ - - - ✓ ✓ - -

UCI Smartphone 5

CAPCAP 20

COVID-19 20

[18], 2020 FedProx ✓ - - - - - - ✓

MNIST 1000

CA
FEMNIST 200

SHAKESPEARE 143

SENTIMENT140 772

[19], 2020 FedGRU ✓ - - - - ✓ - - PeMS 20 CA

[25], 2020 FedMA - ✓ - - ✓ - - -
CIFAR-10 16

CA
SHAKESPEARE 66

[23], 2020 FedPAQ - ✓ - - - ✓ - ✓
CIFAR-10

50 CA
MNIST

[12], 2020 FedAttOpt ✓ - - - - ✓ - -

Penn Treebank

100 CAWikiText-2

Reddit Comments

[22], 2019 FedCS - ✓ - - ✓ - - -
CIFAR-10 100

CA
Fashion MNIST 1000

[17], 2019 FedMD ✓ - - - ✓ - - -

MNIST

10 CA
FEMNIST

CIFAR-10

CIFAR-1000

[1], 2019 FedPer ✓ - - - ✓ - - -

CIFAR-10 10

CACIFAR-100 10

FLICKR-AES 30

[2], 2017 FedAvg ✓ - - - ✓ - - -

CIFAR-10 100

CAMNIST 100

SHAKESPEARE 1146

RBFN = Radial Basis Function Networks, MLP = Multi-Layer Perceptron, CNN = Convolutional Neural Networks, NN = Neural Networks

2.2 Overview of Neural Networks

Neural networks can learn from their surroundings and enhance their performance
through learning. A neural network learns through an interactive process of adjusting
synaptic weights and bias levels, and over time, performance improves by some
predetermined metric. After each iteration of the learning process, the networks should
ideally become more informed about their environment. A few learning methods that
are useful in the context of machine learning are: 1) error-based learning, and 2)
memory-based learning [9].
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Fig. 3. System model.

In error-based learning, models adjust their parameters based on the discrepancy
between their predictions and the true target values in the training data. This is achieved
by optimizing a chosen loss function, which measures the error, using techniques
like backpropagation. Error-based learning models that are good examples include
multilayer perceptron (MLP) and linear regression (LR).

MLP, a feedforward neural network, learns complex non-linear relationships
between input features and target labels through hidden layers. MLPs use
backpropagation, a popular error-based learning algorithm, to update the network’s
weights and minimize the error between predicted and target outputs during training.
Meanwhile, LR aims to predict the probability of a binary outcome by adjusting its
parameters through gradient descent to minimize the error between predicted and actual
target values. Both models iteratively refine their parameters to minimize prediction
errors and make accurate generalizations about unseen data.

On the other hand, memory-based learning models, such as radial basis function
(RBF) neural networks, store training examples explicitly in memory and make
predictions based on their similarity to new inputs. RBF networks use radial basis
functions to represent the data and find the closest training examples to new inputs
during prediction [16]. This memory-based approach allows RBF networks to perform
well in interpolation and pattern recognition tasks. Unlike error-based models, RBF
does not explicitly minimize a predefined error function but instead retrieves relevant
training instances from memory to make predictions.

3 Related Work

In this section, we discuss some federated learning algorithms proposed in the literature
that address different concerns and the integration of use cases in several areas such as
healthcare, security, business, and industry.
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Algorithm 1 On-device learning pseudocode.
Require: Data batch Bi.
Ensure: All local models with structure Wi,j .

1: for j in M do
2: for i in N do
3: Split Bi into training and test data.
4: Initialize an instance of algorithm j, specifying the parameters.
5: Start the training process of the model with the training data.
6: Validate through a predicted task with test data.
7: Get model performance metric.
8: Save local model.
9: Transmit local model Wi, j to central entity.

10: end for
11: end for

As we have mentioned before, most of the proposed solutions are based on
the FedAvg algorithm, implementing the three-stage structure, the same aggregation
method, and varying the deployment technique as well as the learning approach.

3.1 Aggregation Methods

Aggregation methods in federated learning are essential because of their role in
updating global models, whether the messages exchanged are the models themselves,
some or all of their parameters, or gradients. However, aggregation in federated machine
learning goes beyond simply merging model updates. In addition, aggregation can
be carried out hierarchically, aggregating local models on intermediate servers before
sending them to the central server, enabling large-scale federated learning systems.

This is why the aggregation algorithm is such a fundamental concept in federated
learning; it ultimately determines the success of model training and whether or not the
resulting model is practical to use. Some of the aggregation methods are mentioned in
Table 1, since there may be approaches other than those presented here.

In federated learning, a variety of aggregation algorithms are used depending on the
goals to be achieved, such as protecting user privacy, increasing the convergence rate,
and reducing the damage caused by fraudulent customers. Each of these approaches
has its advantages and disadvantages, and some are better suited to certain contexts of
federated learning than others.

3.2 Federated Learning Algorithms

In federated machine learning, the central entity and clients work together to train a
global model. Numerous aggregation techniques have been developed in recent years
as a result of the various methods used to aggregate locally trained models. Federated
learning became a popular topic that attracted scholars and inspired thousands of
experiments in other areas. Table 2 highlights important factors, including the machine
learning algorithms utilized, client selection strategies, and model aggregation type.
For instance, McMahan et al. [2] proposed a practical approach to federated learning of
deep networks that uses an iterative model averaging technique.
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Algorithm 2 Model aggregation pseudocode.
Require: All local models with structure Wi,j .
Ensure: Global model GWj,k.

1: Receive all local models from participant clients.
2: for each algorithm j ∈ M do
3: Aggregate models by complete averaging.
4: Aggregate models by best half models.
5: Aggregate models by best model selection.
6: Evaluate and compare all aggregations.
7: Save global model GWj,k.
8: end for

In this approach, they carry out an empirical evaluation considering four datasets.
The results of the experimentation show that the FedAvg approach trains high-quality
models with relatively few rounds of communication. This can be seen in the results
from a variety of model architectures, such as a multilayer perceptron and two different
convolutional neural networks. Hard et al. [8] proposed an algorithm where a recurrent
neural network linguistic model was trained through a distributed learning framework
in the device to predict the next word on a virtual keyboard on smartphones.

In addition, a comparison was made between the local models and the global model.
In particular, the authors demonstrate the feasibility and benefits of training linguistic
models on devices without exporting sensitive user data to the central node. On the
other hand, Zhu et al. [28] discuss the development of a non-segmented text recognition
model based on a neural network for text recognition of a corpus of Chinese financial
documents, which often contain personal, confidential, and critical information.

The comparison of the results showed that the use of an FL framework effectively
improves the aggregate performance of the text recognition model without sharing
sensitive data. In the healthcare context, some FL approaches have been proposed.
Kaissis et al. [13] presented a research paper detailing the benefits of using FL
algorithms to improve patient care and, above all, to simultaneously address demands
for the protection and use of data.

Meanwhile, Sadilek et al. [24] work demonstrates that creating federated learning
models can achieve similar accuracy, precision, and generalizability, and lead to the
same interpretation as centralized models while achieving significantly greater privacy
protection without significantly increasing computational costs. To do this, they use a
diverse set of health studies from one and several health centers.

Nevertheless, federated learning can be applied to contexts related to finance,
business, and industry. Hiessl et al. [10] introduced an FL-based industrial system that
supports knowledge sharing in the evaluation and continuous updating of learning tasks
with sufficient data similarity to enable optimal collaboration of trading partners on
common ML problems.

It prevents negative knowledge transfer and ensures resource optimization of the
edge devices involved. Kawa et al. [15] developed a method based on federated learning
that allows institutions to collaboratively learn a shared prediction model, keeping all
the data in the banking institutions. In this way, the ability to do machine learning would
be decoupled from the need to store data in the cloud, thus eliminating centralization.
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Table 3. Simulation parameter settings.

Parameters
Value

System RBFN MLP LR

Number of clients [10, 20, 30, 40, 50] - - -

Number of samples 125000 - - -

Number of clusters - 8 - -

Gamma - 0.0009 - -

Beta - - 0.05 -

Number of iterations - - 300 1000

Learning rate - - 0.01 0.01

Jansson [11] proposed a framework for training a federated learning fraud detection
model in which multiple entities collaborate to solve an ML problem under the
coordination of a central server. In this way, financial institutions can collectively reap
the benefits of a shared model, which has seen more fraud than each bank alone, without
sharing the data set among themselves.

4 System Model

The system modeling is illustrated in Fig. 3. We consider a generic federated learning
system with N clients denoted as i ∈ {1, 2, . . . , N}; and M algorithms denoted as
j ∈ {1, 2, . . . , M}. Each client i has a data batch denoted as Bi with all the data
gathered over a certain amount of time. Additionally, Bi serves as the input data for
each algorithm j, which results in the learning model Wi, j .

Each participant client i is assumed to be connected to a cloud facility that provides
computing and storage resources. The cloud server aggregates models with Wi, j

structure during each learning round to generate a global model denoted as GWj, k.
Finally, it is important to emphasize that the structure of our FL system is based on the
FedAvg with a few modifications.

For instance, no selection criteria were considered, and all clients were eligible to
participate in the aggregation process. In addition, transmission rates and backhaul
resources are not considered because our analysis is focused on understanding the
aggregation methods under different scenarios.

Additionally, we consider the aggregation techniques described in Table 1 because,
as we have mentioned before, averaging methods are the most understandable and
commonly used methods to aggregate learning models. The CA method is considered
the standard method for aggregation since FedAvg, and all its variants have integrated
it into their model aggregation process because it ensures that the learning models of
all clients are averaged to generate a generalized model. In this sense, the global model
generation through CA is expressed as:

GWj,k = CA

(
N∑
i=1

Wi, j

)
=

W1, j +W2, j + . . .+Wi, j

N
. (1)
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Similar to this, the BHA approach takes into consideration the top half of the
client-submitted models. A performance test of the models is used to inform the
decision-making process. For instance, let’s assume four clients create and evaluate
a model, which is later transmitted to the central entity. In this case, the central entity
decides through BHA which of all models is going to be aggregated. Equation 2 shows
the global model generated in BHA using the same example:

GWj,k = BHA

(
N=4∑
i=1

Wi, j

)
=

W1,j +W4,j

N

2

. (2)

The BMS technique, which differs from the average and involves choosing the best
model from the clients, can be used to simplify the aggregation process so that it is
easier to grasp. Returning to the previous example in this sense, the difference is that
the central entity will now only choose the best model out of all of them. The global
model generated by the BMS aggregation can be expressed as follows:

GWj,k = BMS

(
N=4∑
i=1

Wi, j

)
= W1,j . (3)

5 Proposed Approach

Our suggested federated learning system follows the conventional three-phase structure
of all federated learning algorithms; however, we omit the participant client selection
stage because we assume that clients have already been previously selected through
a selection technique. In this regard, the two remaining phases of our approach are
on-device training and model aggregation, which are detailed below.

5.1 On-Device Learning

At this stage, participant clients have already been selected and modeled as smart
devices (smartphones). It is also assumed that the devices are distributed in a coverage
area with good computational capacity and communication channel conditions, where
each smartphone has enough power capacity to carry out a training process. In
federating learning systems, modeling a device with a data collection process is
commonly considered. For this, each device already possesses a data batch with data
collected over a period of time. Each data batch acts as input for any learning algorithms
the device desires to employ.

In this situation, neural networks like RBFN, MLP, and LR have been taken into
consideration because the goal of our approach is to solve a problem involving linear
regression and improve the results’ interpretability. Once the training process ends, the
output for each algorithm is a learning model, which has its own structure. Finally, the
validation step involves taking the test data and calculating its performance in terms
of the coefficient of determination. In Algorithm 1, the main steps of the on-device
learning stage are presented.
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Fig. 4. RBFN performance varying the number of clients from 10 to 50.

5.2 Model Aggregation

On the other hand, Algorithm 2 shows the steps that make up our approach running
on the central entity side. Initially, the central entity is modeled as a cloud server with
computational and storage capacity because it is assumed that our federated learning
system will be based in the cloud. The main task of the cloud server is receiving
the local models from participating clients. The models are combined to generate a
new generalized model using an aggregation method after all local models have been
transmitted to the cloud server.

Complete averaging, best half averaging, and best model selection are regarded as
aggregation methods in this work since they tend to be excellent representations of
aggregation methods in federated learning. Once the unification process is complete,
each algorithm j produces a global learning model that keeps the original local models’
structural integrity. A validation procedure is then used to assess the new model’s
performance and determine whether the coefficient of determination has improved. All
these steps are repeated k learning rounds.

6 Experiments

In this section, the effectiveness of the suggested federated learning system is
determined using in-depth simulations. To demonstrate that model averaging isn’t the
best option in federated learning methods, the simulation settings will be shown first,
followed by the simulation results.
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Fig. 5. MLP performance varying the number of clients from 10 to 50.

6.1 Simulation Setup

We simulate a common cloud-based federated learning system with smart devices
dispersed throughout a coverage region. We chose a homogenous setting for this
simulation where each device has a data batch with the same number of samples,
creating the same conditions for each device to perform the training process.
Additionally, we looked at a linear regression problem where the effectiveness of the
aggregation process is assessed using complete averaging, best half averaging, and best
model selection techniques.

We also contrast these aggregating methods across three distinct neural network
designs. The first two relate to methodologies frequently utilized in error-based
learning, while the third strategy makes use of memory-based learning. Table
3 shows the parameters used for the system configuration, including the neural
network parameters. Specifically, the following provides information about the
examined algorithms:

– Multilayer Perceptron (MLP). It is a versatile algorithm that can rupture
complex relationships in data due to its multiple hidden layers and nonlinear
activation functions.

– Linear Regression (LR). It is straightforward to interpret, making it a great choice for
cases where the relationship between variables seems linear.

– Radial Basis Function Network (RBFN). It focuses on localized patterns within the
data using radial basis functions, which allows it to capture different behaviors in
different regions of the input space.
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Fig. 6. LR performance varying the number of clients from 10 to 50.

6.2 Metrics

For each learning round in the system, a set of clients transmits local models to a central
entity, which is in charge of the aggregation process. However, for each generated
model, the following performance metrics are obtained:

– Coefficient of Determination (R2 Score). It represents the proportion of variance
in the dependent variable that is predictable from the independent variables in the
model. In other words, it measures the goodness of fit of the model. In addition, it
is easy to interpret. A value of 1.0 indicates that the model perfectly predicts the
variations in the dependent variable, while a value of 0.0 suggests that the model’s
predictions do not explain any variability beyond the mean of the dependent variable.

6.3 Performance Analysis

The effectiveness of RBFN in a federated learning system is displayed in Figure 4. It
demonstrates a comparison of the three model aggregating methods for five different
configurations in more detail. In this experiment, we adjusted both the total number of
clients and the average number of samples per client so that, while the total number of
clients rose, the average number of samples fell.

Results of the experiment reveal that BHA and CA perform similarly across all client
configurations, while BMS performs reasonably well for 10 and 20 clients. It is critical
to emphasize that BMS suffers when the number of clients grows since it becomes more
challenging to maintain a generalized model with only one client’s knowledge. On the
other hand, Figure 5 shows the performance of MLP, which suggests that averaging
methods from model aggregation, such as CA and BHA, are not the best for this
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architecture. The average strategy performs poorly for the configuration of 10 users,
with a r2 score of less than 0.2. The experiment continues with this behavior in the
subsequent setups, where it even appears to get worse as the number of clients rises.
Instead, the aggregation strategy for the best model selection offers a good performance
even when the number of users is increasing.

For all configurations, BMS keeps its r2 score value above 0.6; the setup with 30
clients is the only one that scores higher than 0.8. The performance of the LR algorithm
in various federated learning system setups is shown in Figure 6. It demonstrates that
under various configurations of client and sample numbers, the behavior of the three
model aggregation strategies is nearly identical. But it is crucial to note that, except in
the trial with 30 participant clients, where CA, BHA, and BMS are all above 0.93 and
only the BMS exceeds the 0.94 target, the performance of LR decreases in terms of r2

score as the number of clients increases.

7 Conclusions

In this paper, we have studied the aggregation process through different techniques in
non-common scenarios. Furthermore, we discuss the importance of model aggregation
to generate a generalized global model that represents all users involved in collaborative
training. Simulation results have shown that the CA technique is not always the most
effective way to aggregate learning models, even when it is mostly used in FedAvg
algorithm variants.

However, other model averaging techniques such as BHA and BMS should be
considered in more federating learning scenarios because, in some cases, they have
better performance than the CA technique. In future work, we plan to integrate the
selection stage, which is a fundamental part of determining the participant users,
and model a communication system that allows us to play scenarios with different
deployment approaches such as cloud, edge, and hybrid.

References

1. Arivazhagan, M. G., Aggarwal, V., Singh, A. K., Choudhary, S.: Federated learning with
personalization layers (2019) doi: 10.48550/ARXIV.1912.00818

2. Brendan-McMahan, H., Moore, E., Ramage, D., Hampson, S., Aguera-y-Arcas, B.:
Communication-efficient learning of deep networks from decentralized data. In: Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, vol. 54 (2016)
doi: 10.48550/ARXIV.1602.05629

3. Chai, Z., Fayyaz, H., Fayyaz, Z., Anwar, A., Zhou, Y., Baracaldo, N., Ludwig, H., Cheng,
Y.: Towards taming the resource and data heterogeneity in federated learning. In: USENIX
Conference on Operational Machine Learning, pp. 19–21 (2019)

4. Chen, M., Poor, H. V., Saad, W., Cui, S.: Convergence time optimization for federated
learning over wireless networks. IEEE Transactions on Wireless Communications, vol. 20,
no. 4, pp. 2457–2471 (2021) doi: 10.1109/twc.2020.3042530

5. Chen, M., Yang, Z., Saad, W., Yin, C., Poor, H. V., Cui, S.: A joint learning
and communications framework for federated learning over wireless networks. IEEE
Transactions on Wireless Communications, vol. 20, no. 1, pp. 269–283 (2021) doi:
10.1109/twc.2020.3024629

134

Sergio Pérez-Picazo, Hiram Galeana-Zapién, Edwyn Aldana-Bobadilla

Research in Computing Science 152(12), 2023 ISSN 1870-4069



6. Chen, Y., Qin, X., Wang, J., Yu, C., Gao, W.: Fedhealth: A federated transfer learning
framework for wearable healthcare. IEEE Intelligent Systems, vol. 35, no. 4, pp. 83–93
(2020) doi: 10.1109/mis.2020.2988604

7. Ferdowsi, A., Saad, W.: Generative adversarial networks for distributed intrusion detection
in the internet of things. In: IEEE Global Communications Conference, pp. 1–6 (2019) doi:
10.1109/globecom38437.2019.9014102

8. Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., Eichner, H.,
Kiddon, C., Ramage, D.: Federated learning for mobile keyboard prediction. arXiv (2018)
doi: 10.48550/ARXIV.1811.03604

9. Haykin, S.: Neural networks: A comprehensive foundation. Prentice Hall PTR (1998)
10. Hiessl, T., Schall, D., Kemnitz, J., Schulte, S.: Industrial federated learning – requirements

and system design. In: Highlights in Practical Applications of Agents, Multi-Agent Systems,
and Trust-worthiness. The PAAMS Collection, vol. 1233, pp. 42–53 (2020) doi: 10.1007/97
8-3-030-51999-5 4

11. Jansson, M., Axelsson, M.: Federated learning used to detect credit card fraud. Master’s
Thesis, Department of Computer Science, LUND University (2020)

12. Jiang, J., Ji, S., Long, G.: Decentralized knowledge acquisition for mobile
internet applications. World Wide Web, vol. 23, no. 5, pp. 2653–2669 (2020) doi:
10.1007/s11280-019-00775-w

13. Kaissis, G. A., Makowski, M. R., Rückert, D., Braren, R. F.: Secure, privacy-preserving and
federated machine learning in medical imaging. Nature Machine Intelligence, vol. 2, no. 6,
pp. 305–311 (2020) doi: 10.1038/s42256-020-0186-1

14. Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A. T.: Scaffold:
Stochastic controlled averaging for federated learning. In: Proceedings of the 37th
International Conference on Machine Learning, vol. 119, pp. 5132–5143 (2020)

15. Kawa, D., Punyani, S., Nayak, P., Karkera, A., Jyotinagar, V.: Credit risk assessment
from combined bank records using federated learning. International Research Journal of
Engineering and Technology, vol. 6, no. 4, pp. 1355–1358 (2019)

16. Kriesel, D.: A brief introduction to neural networks (2007) www.dkriesel.com
17. Li, D., Wang, J.: FedMD: heterogenous federated learning via model distillation. In:

Proceedings of the 33rd Conference on Neural Information Processing Systems (2019) doi:
10.48550/ARXIV.1910.03581

18. Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization
in heterogeneous networks. In: Proceedings of the 1st Adaptive and Multitask Learning
Workshop (2018) doi: 10.48550/ARXIV.1812.06127

19. Liu, Y., Yu, J. J. Q., Kang, J., Niyato, D., Zhang, S.: Privacy-preserving traffic flow
prediction: a federated learning approach. IEEE Internet of Things Journal, vol. 7, no. 8,
pp. 7751–7763 (2020) doi: 10.1109/jiot.2020.2991401

20. Liu, Y., Zhang, X., Kang, Y., Li, L., Chen, T., Hong, M., Yang, Q.: Fedbcd:
a communication-efficient collaborative learning framework for distributed features.
IEEE Transactions on Signal Processing, vol. 70, pp. 4277–4290 (2022) doi:
10.1109/tsp.2022.3198176

21. Mahedi-Hasan, H. M.: Analysis of model aggregation techniques in federated learning.
Master’s Thesis, Faculty of Graduate Studies and Research, University of Regina (2021)

22. Nishio, T., Yonetani, R.: Client selection for federated learning with heterogeneous resources
in mobile edge. In: IEEE International Conference on Communications, pp. 1–7 (2019) doi:
10.1109/icc.2019.8761315

23. Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., Pedarsani, R.: FedPAQ:
A communication-efficient federated learning method with periodic averaging and
quantization. Proceedings of the 23rd International Conference on Artificial Intelligence and
Statistics (2020) doi: 10.48550/ARXIV.1909.13014

135

Understanding the Limits of Average Aggregation in Federated Learning Scenarios

Research in Computing Science 152(12), 2023ISSN 1870-4069



24. Sadilek, A., Liu, L., Nguyen, D., Kamruzzaman, M., Serghiou, S., Rader, B., Ingerman,
A., Mellem, S., Kairouz, P., Nsoesie, E. O., MacFarlane, J., Vullikanti, A., Marathe,
M., Eastham, P., Brownstein, J. S., Aguera-y-Arcas, B., Howell, M. D., Hernandez, J.:
Privacy-first health research with federated learning. npj Digital Medicine, vol. 4, no. 1
(2021) doi: 10.1038/s41746-021-00489-2

25. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning
with matched averaging. In: Proceedings of the 8th International Conference on Learning
Representations (2020) doi: 10.48550/ARXIV.2002.06440

26. Wu, Q., Chen, X., Zhou, Z., Zhang, J.: Fedhome: cloud-edge based personalized federated
learning for in-home health monitoring. IEEE Transactions on Mobile Computing, vol. 21,
no. 8, pp. 2818–2832 (2022) doi: 10.1109/tmc.2020.3045266

27. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications.
ACM Transactions on Intelligent Systems and Technology, vol. 10, no. 2, pp. 1–19 (2019)
doi: 10.1145/3298981

28. Zhu, X., Wang, J., Hong, Z., Xia, T., Xiao, J.: Federated learning of unsegmented chinese
text recognition model. In: Proceedings of the IEEE 31st International Conference on Tools
with Artificial Intelligence, pp. 1341–1345 (2019) doi: 10.1109/ictai.2019.00186

136

Sergio Pérez-Picazo, Hiram Galeana-Zapién, Edwyn Aldana-Bobadilla

Research in Computing Science 152(12), 2023 ISSN 1870-4069


